Objective: Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation.

Methods: Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo.

Results: OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases, including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions.

Interpretation: We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608752PMC
http://dx.doi.org/10.1002/ana.23788DOI Listing

Publication Analysis

Top Keywords

opc maturation
28
demyelinating lesions
24
digestion products
16
hyaluronidase
9
ph20
8
ph20 hyaluronidase
8
opc
8
maturation remyelination
8
inhibit opc
8
hyaluronidase expression
8

Similar Publications

Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat is the second-most consumed staple food in India, and rising heat waves have highlighted the need for developing heat-tolerant wheat varieties to ensure food security.
  • A study used a mapping population of backcross introgression lines (BILs) derived from a heat-tolerant wild wheat relative to identify quantitative trait loci (QTLs) for traits related to terminal heat tolerance during optimal and heat-stressed conditions.
  • The research led to the discovery of 30 QTLs associated with heat tolerance traits on multiple chromosomes, providing valuable insights and potential markers for genomic breeding aimed at improving heat resilience in wheat plants.
View Article and Find Full Text PDF

Nuclear receptor PPARγ targets GPNMB to promote oligodendrocyte development and remyelination.

Brain

January 2025

Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.

Myelin injury occurs in brain ageing and in several neurological diseases. Failure of spontaneous remyelination is attributable to insufficient differentiation of oligodendrocyte precursor cells (OPCs) into mature myelin-forming oligodendrocytes in CNS demyelinated lesions. Emerging evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) is the master gatekeeper of CNS injury and repair and plays an important regulatory role in various neurodegenerative diseases.

View Article and Find Full Text PDF

Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development.

Glia

January 2025

Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.

Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown.

View Article and Find Full Text PDF

Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System.

ACS Biomater Sci Eng

December 2024

Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903-1738 United States.

The current lack of therapeutic approaches to demyelinating disorders and injuries stems from a lack of knowledge surrounding the underlying mechanisms of myelination. This knowledge gap motivates the development of effective models to study the role of environmental cues in oligodendrocyte progenitor cell (OPC) maturation. Such models should focus on determining, which factors influence OPCs to proliferate and differentiate into mature myelinating oligodendrocytes (OLs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!