A new luminescence resonant energy transfer (LRET) system has been designed that utilizes near-infrared (NIR)-to-NIR upconversion lanthanide nanophosphors (UCNPs) as the donor, and Au nanorods (Au NRs) as the acceptor. The UCNPs were excited by a near-infrared (980 nm) wavelength and also emitted at a near-infrared wavelength (804 nm) using an inexpensive infrared continuous wave laser diode. The Au NRs showed a high absorption band around 806 nm, which provided large spectral overlap between the donor and the acceptor. Hg(2+) ions were added to an aqueous solution containing the UCNPs and Au NRs that were modified with a Hg(2+) aptamer. Then, a sandwich-type LRET system was developed for the detection of Hg(2+) ions that had high sensitivity and selectivity in the NIR region. The method was successfully applied to the sensing of Hg(2+) ions in water and human serum samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an36921hDOI Listing

Publication Analysis

Top Keywords

hg2+ ions
12
energy transfer
8
lret system
8
near-infrared
4
near-infrared near-infrared
4
near-infrared upconverting
4
upconverting nayf4yb3+tm3+
4
nayf4yb3+tm3+ nanoparticles-aptamer-au
4
nanoparticles-aptamer-au nanorods
4
nanorods light
4

Similar Publications

Mercury(II)-Triggered Targeted and NIR-II Fluorescence/Photoacoustic Imaging Probe for High-Sensitivity Early Diagnosis and Evaluating Drug against Acute Liver and Kidney Injury.

Anal Chem

January 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou 730000, China.

Article Synopsis
  • Mercury ions disrupt the body's antioxidant defenses, causing oxidative stress and related health issues, highlighting the need for effective real-time monitoring of mercury levels during organ damage.
  • Researchers developed a novel dual-mode molecular probe (NHG-2) that uses NIR-II fluorescence/photoacoustic imaging to noninvasively track mercury fluctuations and assess acute liver and kidney injury in mice.
  • NHG-2 also helps evaluate the effectiveness of treatments like -acetylcysteine (NAC) by revealing how NAC activates protective cellular pathways and restores normal mitochondrial function.
View Article and Find Full Text PDF

Assessing heavy metal ion (HMI) contamination to sustain drinking water hygiene is a challenge. Conventional approaches are appealing for the detection of HMIs but electrochemical approaches can resolve the limitations of these approaches, such as tedious sample preparation, high cost, time consuming and the need for trained professionals. Here, an electrochemical approach is developed using a nano-sphered polypyrrole (PPy) functionalized with MoS (PPy/MoS) by square wave anodic stripping voltammetry for the detection of HMIs.

View Article and Find Full Text PDF

The effective adsorption of (mercuric ions) Hg onto synthesized and characterized composite materials based on calcium alginate (CG), zinc metal-organic farmwork (MOF-2), and silk fibroin powder (SF) has been reported in this study. Under various application conditions, the adsorption capacities of silk fibroin powder/zinc metal organic framework/alginate composite (ZSG) were compared with those of the other individual solid materials. These solid adsorbents materials were characterized by various physicochemical techniques.

View Article and Find Full Text PDF

Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg ions in various real samples such as rice, garlic, shrimp, and root samples.

View Article and Find Full Text PDF

Resazurin-based fluorescent probe for mercury ions and its applications in environment and biological systems.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:

Mercury is considered to be one of the most typical and toxic elements of heavy metals in the environment, threatening human health even at very low level. For this reason, we developed a new fluorescence-enhanced probe RTQ based on resazurin dye, which realizes the selective detection of Hg by using carbonothioate group as the recognition receptor. Probe RTQ can quantitatively assay Hg ranging from 0-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!