A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-013-6820-6 | DOI Listing |
Anal Bioanal Chem
April 2013
Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, CNRS-Université de Lorraine and CNRS, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy, France.
Biosens Bioelectron
February 2012
LCPME, UMR 7564, CNRS-Nancy University, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France.
A new strategy directed to the durable immobilization of NAD(+)/NADH cofactors has been tested, along with a suitable redox mediator (ferrocene), in biocompatible sol-gel matrices encapsulating a bi-enzymatic system (a dehydrogenase and a diaphorase, this latter being useful to the safe regeneration of the cofactor), which were deposited as thin films onto glassy carbon electrode surfaces. It involves the chemical attachment of NAD(+) to the silica matrix using glycidoxypropylsilane in the course of the sol-gel process (in smooth chemical conditions). This approach based on chemical bonding of the cofactor (which was checked by infrared spectroscopy) led to good performances in terms of long-term stability of the electrochemical response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!