MeCAT--comparing relative quantification of alpha lactalbumin using both molecular and elemental mass spectrometry.

Analyst

Applied Analytical and Environmental Chemistry, Department of Chemistry, Humboldt-Universitaet zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany.

Published: April 2013

Chemical tagging with stable isotopes is one of the best established methods for the quantification of proteins using mass spectrometry, especially in non-proliferating cells and tissue. The absolute quantification of proteins is still a challenge. Metal-coded affinity tagging (MeCAT), used to label proteins and peptides with lanthanide ions, allows both, relative and absolute, quantitative determination. MeCAT loaded with lanthanide ions allows the use of inductively coupled plasma mass spectrometry (ICP-MS) enabling very accurate and sensitive quantification of peptides and proteins based on the metal ion signal. Furthermore, multiplex assays are possible that are not limited to 4- or 8-plex analyses when using different lanthanides. Naturally, different lanthanides also lead to different molecular masses for the same labelled peptides which can be distinguished easily. This enables the relative quantification in electrospray MS based on the relative signal intensities of the differentially labelled peptides. We have studied MeCAT labelled peptides, using LC/ESI-MS and LC/ESI-MS/MS with infrared multiphoton dissociation (IRMPD) to show that both the molecular masses and the specific fragments resulting from the MS/MS experiments can be used for relative quantification. The results are compared with high performance liquid chromatography (HPLC)/ICP-MS and direct ICP-MS analysis as standard methods. We show that the ESI and IRMPD based methods deliver quantitative results comparable to ICP-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an36602bDOI Listing

Publication Analysis

Top Keywords

relative quantification
12
mass spectrometry
12
labelled peptides
12
quantification proteins
8
lanthanide ions
8
ions allows
8
molecular masses
8
quantification
6
peptides
5
mecat--comparing relative
4

Similar Publications

Double bowtie design for high sensitivity pediatric spectral CT.

Conf Proc Int Conf Image Form Xray Comput Tomogr

August 2024

Department of Radiology, Perelman School of Medicine, Philadelphia, PA USA.

Despite the evident benefits of spectral computed tomography (CT) in delivering qualitative imaging superior to that of conventional CT in adults, its application in pediatric diagnostic imaging is still relatively limited due to various reasons, including design limitations and radiation dose considerations. The use of specialized K-edge filters, in conjunction with other spectral technologies, has been demonstrated to improve spectral quantification accuracy. X-ray flux limitations generally pose challenges in these concepts when applied to adults.

View Article and Find Full Text PDF

Mass spectrometry is a cornerstone of quantitative proteomics, enabling relative protein quantification and differential expression analysis () of proteins. As experiments grow in complexity, involving more samples, groups, and identified proteins, interactive differential expression analysis tools become impractical. The addresses this challenge by providing a command-line interface that simplifies , making it accessible to nonprogrammers and seamlessly integrating it into workflow management systems.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) allows the analysis of pathogens, chemicals or other biomarkers in wastewater to derive unbiased epidemiological information at population scale. After re-gaining attention during the SARS-CoV-2 pandemic, the field holds promise as a surveillance and early warning system by tracking emerging pathogens with pandemic potential. Expanding the current toolbox of analytical techniques for wastewater analysis, we explored the use of Hyperplex PCR (hpPCR) to analyse SARS-CoV-2 mutations in wastewater samples collected weekly in up to 22 sites across Sweden between October 2022 and December 2023.

View Article and Find Full Text PDF

Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.

Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!