A no-go result on the purification of quantum states.

Sci Rep

Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast, United Kingdom.

Published: August 2013

The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementation of quantum technologies. Here we show that it is impossible to "transfer" part of such mixedness to a "trash" system without losing some of the initial information. Such loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this interesting phenomenon and its consequences for general quantum information theory, linking it to the information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of general quantum correlations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589723PMC
http://dx.doi.org/10.1038/srep01387DOI Listing

Publication Analysis

Top Keywords

general quantum
8
quantum
6
no-go result
4
result purification
4
purification quantum
4
quantum states
4
states encoded
4
encoded quantum
4
quantum system
4
system generally
4

Similar Publications

We construct a non-chiral conformal field theory (CFT) on the torus that accommodates a second quantization of the elliptic Calogero-Sutherland (eCS) model. We show that the CFT operator that provides this second quantization defines, at the same time, a quantum version of a soliton equation called the non-chiral intermediate long-wave (ncILW) equation. We also show that this CFT operator is a second quantization of a generalized eCS model which can describe arbitrary numbers of four different kinds of particles; we propose that these particles can be identified with solitons of the quantum ncILW equation.

View Article and Find Full Text PDF

Spin-orbit coupling (SOC) induced nontrivial bandgap and complex Fermi surface has been considered to be profitable for thermoelectrics, which, however, is generally appreciable only in heavy elements, thereby detrimental to practical application. In this study, the SOC-driven extraordinary thermoelectric performance in a light 2D material Fe₂S₂ is demonstrated via first-principles calculations. The abnormally strong SOC, induced by electron correlation through 3d orbitals polarization, significantly renormalizes the band structures, which opens the bandgap via Fe 3d orbitals inversion, exposes the second conduction valley with weak electron-phonon coupling, and aligns the energy of Fe 3d and S 3p orbitals with divergent momentum in valence band.

View Article and Find Full Text PDF

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet.

Nat Mater

January 2025

State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai, China.

Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging.

View Article and Find Full Text PDF

We derive the compact closed forms of local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) for hybrid qubit-qutrit axially symmetric (AS) states. This allows us to study the quantum correlations in detail and present some essentially novel results for spin-(1/2, 1) systems, the Hamiltonian of which contains ten independent types of physically important parameters. As an application of the derived formulas, we study the behavior of these two quantum correlation measures at thermal equilibrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!