Evolving dual targeting of a prokaryotic protein in yeast.

Mol Biol Evol

Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.

Published: July 2013

Dual targeting is an important and abundant phenomenon. Indeed, we estimate that more than a third of the yeast mitochondrial proteome is dual localized. The enzyme fumarase is a highly conserved protein in all organisms with respect to its sequence, structure, and enzymatic activity. In eukaryotes, it is dual localized to the cytosol and mitochondria. In Saccharomyces cerevisiae, the dual localization of fumarase is achieved by the reverse translocation mechanism; all fumarase molecules harbor a mitochondrial targeting sequence (MTS), are targeted to mitochondria, begin their translocation, and are processed by mitochondrial processing peptidase in the matrix. A subset of these processed fumarase molecules in transit is then fully imported into the matrix, whereas the majority moves back into the cytosol by reverse translocation. The proposed driving force for fumarase distribution is protein folding during import. Here, we asked how reverse translocation could have evolved on a prokaryotic protein that had already acquired expression from the nuclear genome and a targeting sequence. To address this question, we used, as a model, the Escherichia coli FumC Class II fumarase, which is homologous to eukaryotic fumarases (∼58% identity and ∼74% similarity to the yeast Fum1). Starting with an exclusively mitochondrial targeted FumC (attached to a strong MTS), we show that two randomly acquired mutations within the prokaryotic FumC sequence are sufficient to cause substantial dual targeting by reverse translocation. In fact, the unmutated MTS-FumC also has some ability to be dual targeted but only at low temperatures. Our results suggest that in this case, evolution of dual targeting by reverse translocation is based on naturally occurring and fortuitously conserved features of fumarase folding.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/mst039DOI Listing

Publication Analysis

Top Keywords

reverse translocation
20
dual targeting
16
prokaryotic protein
8
dual localized
8
fumarase molecules
8
targeting sequence
8
targeting reverse
8
dual
7
fumarase
7
targeting
6

Similar Publications

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem

January 2025

Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:

Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.

View Article and Find Full Text PDF

FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway.

J Adv Res

January 2025

Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:

Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.

Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.

View Article and Find Full Text PDF

Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China. Electronic address:

Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!