Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts.

Cell Calcium

Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, United States.

Published: April 2013

Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca(2+) signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca(2+) increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca(2+) signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10min after agonist exposure. Inhibition of ATP-induced increases in Ca(2+) by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca(2+) ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca(2+). These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601548PMC
http://dx.doi.org/10.1016/j.ceca.2013.01.004DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
cytoskeleton remodeling
8
human fibroblasts
8
cytosolic ca2+
8
ca2+ signaling
8
ca2+
6
purine
4
purine receptor
4
receptor mediated
4
mediated actin
4

Similar Publications

Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).

View Article and Find Full Text PDF

Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.

View Article and Find Full Text PDF

Background: Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.

Objective: Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat. This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).

View Article and Find Full Text PDF

Transcriptional profiling of exosomes derived from serum of patients with rare earth pneumoconiosis by RNA-sequencing and PI3K/Akt pathway is activated in lung of mice exposed to rare earth NdO.

Toxicol Lett

January 2025

Department of Public Health,International College,Krirk University, Bangkok 10220, Thailand; School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China. Electronic address:

Rare earth is used extensively around the world, and rare earth particles cause a respiratory disease in workers termed rare earth pneumoconiosis(REP) that have attracted considerable attention. However, the mechanisms of REP, characterized by diffuse pulmonary fibrosis, are elusive. REP progression involves various signaling pathway networks comprising numerous cell types and cytokines.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!