Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Formamide (NH2CHO, FM) has been considered an active key precursor in prebiotic chemistry on early Earth. Under certain conditions such as dry lagoons, FM can decompose to produce reactants that lead to formation of more complex biomolecules. Specifically, FM decomposition follows many reactive channels producing small molecules such as H2, CO, H2O, HCN, HNC, NH3, and HNCO with comparable energy barriers in the range of 73-82 kcal/mol. Due to the likely presence of water on prebiotic Earth and the intrinsic presence of water following FM decomposition, we explore the effects of water oligomers, (H2O)n with n = 1-3, on its dehydration, dehydrogenation, and decarbonylation reactions using quantum chemical computations. Geometries are optimized using MP2/aug-cc-pVxZ calculations (x = D,T), and relative energies are evaluated using coupled-cluster theory CCSD(T) with the aug-cc-pVxZ basis sets (x = D, T, Q). Where possible the coupled-cluster energies are extrapolated to the complete basis set limit (CBS). Water classically acts as an efficient bifunctional catalyst for decomposition. With the presence of one water molecule, the dehydration pathway leading to HCN is favored. When two and three water molecules are involved, dehydration remains energetically favored over other channels and attains an energy barrier of ~30 kcal/mol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp312853j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!