Plants possess an innate immune system enabling them to defend themselves against pathogen attack.The accumulation of newly synthesized pathogenesis related proteins (PRs) is one of the most studied inducible plant defence response. In this paper, we report on the characterization of a class I PR4 vacuolar protein from Arabidopsis, named At HEL. The protein has a modular structure consisting of an N-terminal hevein-like domain(CB-HEL) and a C-terminal domain (CD-HEL) that are posttranslationally processed. Both domains show a strong antifungal activity, but they do not have chitinolitic properties.CD-HEL was found to be endowed with RNase, but not DNase activity. Molecular modeling carried out on both domains revealed that CB-HEL possesses a chitin binding site strictly conserved between hevein-type peptides and that the cavity involved in substrate interaction of CD-HEL do not show any residue substitution with respect to the orthologous wheatwin1 from wheat. Using a fishing for partners approach, CB-HEL was found to interact with a fungal fruiting body lectin. According to literature, we can hypothesize that CB-HEL could cross the pathogen hyphal membrane and that its interaction with a fungal lectin could knock out one of the weapons that the fungus uses.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2012-0225DOI Listing

Publication Analysis

Top Keywords

modular structure
8
hel protein
8
protein arabidopsis
8
structure hel
4
arabidopsis reveals
4
reveals potential
4
potential functions
4
functions pr-4
4
pr-4 proteins
4
proteins plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!