Oxidation of aqueous ∼8 nm unprotected copper nanoparticles takes place under air in approximately 2 hours at 30 °C to give Cu(2+) as a final product through an intermediate Cu(+) species. At 5 °C the process is about 5 times slower; similarly, vitamin C, which plays a sacrificial role, also slows down the oxidation, while CuNP catalyses the oxidation. In this work, we present a detailed analysis of the oxidation mechanism of colloidal CuNP inferred through spectroscopic methods (UV-visible and EPR) combined with oxygen uptake measurements, with emphasis on factors affecting the oxidative process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt32836h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!