We have performed a density functional theory (DFT) investigation of the interactions of H2O2, H2O and HO radicals with clusters of ZrO2, TiO2 and Y2O3. Different modes of H2O adsorption onto the clusters were studied. In almost all the cases the dissociative adsorption is more exothermic than molecular adsorption. At the surfaces where H2O has undergone dissociative adsorption, the adsorption of H2O2 and the transition state for its decomposition are mediated by hydrogen bonding with the surface HO groups. Using the functionals B3LYP, B3LYP-D and M06 with clusters of 26 and 8 units of ZrO2, the M06 functional performed better than B3LYP in describing the reaction of decomposition of H2O2 and the adsorption of H2O. Additionally, we investigated clusters of the type (ZrO2)2, (TiO2)2 and (Y2O3) and the performance of the functionals B3LYP, B3LYP-D, B3LYP*, M06, M06-L, PBE0, PBE and PWPW91 in describing H2O2, H2O and HO˙ adsorption and the energy barrier for decomposition of H2O2. The trends obtained for HO˙ adsorption onto the clusters are discussed in terms of the ionization energy of the metal cation present in the oxide. In order to correctly account for the existence of an energy barrier for the decomposition of H2O2, the functional used must include Hartree-Fock exchange. Using minimal cluster models, the best performance in describing the energy barrier for H2O2 decomposition was obtained with the M06 and PBE0 functionals - the average absolute deviations from experiments are 6 kJ mol(-1) and 5 kJ mol(-1) respectively. With the M06 functional and a larger monoclinic (ZrO2)8 cluster model, the performance is in excellent agreement with experimental data. For the different oxides, PBE0 was found to be the most effective functional in terms of performance and computational time cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp44559c | DOI Listing |
Mikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Nanotechnology Laboratory, National Center for High Technology, Pavas, San José 10109, Costa Rica.
This study focuses on the extraction of phenolic compounds from the fermentation of and . The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
China University of Petroleum East China, State Key Laboratory of Heavy Oil Processing, 66 The Yangtze River West Road, 266580, Qingdao, CHINA.
The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!