K-Ras is frequently mutated in human cancers. Mutant (mt) K-Ras can stimulate both oncogenic transformation and apoptosis through activation of extracellular signal-regulated kinase (ERK) and AKT pathways and the MST2 pathway, respectively. The biological outcome is determined by the balance and cross talk between these pathways. In colorectal cancer (CRC), a K-Ras mutation is negatively correlated with MST2 expression, as mt K-Ras can induce apoptosis by activating the MST2 pathway. However, wild-type (wt) K-Ras can prevent the activation of the MST2 pathway upon growth factor stimulation and enable transformation by mt K-Ras in CRC cells that express MST2. Here we have investigated the mechanism by which wt and mt K-Ras differentially regulate the MST2 pathway and MST2-dependent apoptosis. The ability of K-Ras to activate MST2 and MST2-dependent apoptosis is determined by the differential activation kinetics of mt K-Ras and wt K-Ras. Chronic activation of K-Ras by mutation or overexpression of Ras exchange factors results in the activation of MST2 and LATS1, increased MST2-LATS1 complex formation, and apoptosis. In contrast, transient K-Ras activation upon epidermal growth factor (EGF) stimulation prevents the formation of the MST2-LATS1 complex in an AKT-dependent manner. Our data suggest that the close relationship between Ras prosurvival and proapoptotic signaling is coordinated via the differential regulation of the MST2-LATS1 interaction by transient and chronic stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624182PMC
http://dx.doi.org/10.1128/MCB.01414-12DOI Listing

Publication Analysis

Top Keywords

mst2 pathway
16
k-ras
14
mst2
9
k-ras activation
8
activation kinetics
8
kinetics k-ras
8
k-ras mutation
8
activation mst2
8
growth factor
8
mst2-dependent apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!