In bacteria, transformation and restriction-modification (R-M) systems play potentially antagonistic roles. While the former, proposed as a form of sexuality, relies on internalized foreign DNA to create genetic diversity, the latter degrade foreign DNA to protect from bacteriophage attack. The human pathogen Streptococcus pneumoniae is transformable and possesses either of two R-M systems, DpnI and DpnII, which respectively restrict methylated or unmethylated double-stranded (ds) DNA. S. pneumoniae DpnII strains possess DpnM, which methylates dsDNA to protect it from DpnII restriction, and a second methylase, DpnA, which is induced during competence for genetic transformation and is unusual in that it methylates single-stranded (ss) DNA. DpnA was tentatively ascribed the role of protecting internalized plasmids from DpnII restriction, but this seems unlikely in light of recent results establishing that pneumococcal transformation was not evolved to favor plasmid exchange. Here we validate an alternative hypothesis, showing that DpnA plays a crucial role in the protection of internalized foreign DNA, enabling exchange of pathogenicity islands and more generally of variable regions between pneumococcal isolates. We show that transformation of a 21.7 kb heterologous region is reduced by more than 4 logs in dpnA mutant cells and provide evidence that the specific induction of dpnA during competence is critical for full protection. We suggest that the integration of a restrictase/ssDNA-methylase couplet into the competence regulon maintains protection from bacteriophage attack whilst simultaneously enabling exchange of pathogenicicy islands. This protective role of DpnA is likely to be of particular importance for pneumococcal virulence by allowing free variation of capsule serotype in DpnII strains via integration of DpnI capsule loci, contributing to the documented escape of pneumococci from capsule-based vaccines. Generally, this finding is the first evidence for a mechanism that actively promotes genetic diversity of S. pneumoniae through programmed protection and incorporation of foreign DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573125PMC
http://dx.doi.org/10.1371/journal.ppat.1003178DOI Listing

Publication Analysis

Top Keywords

foreign dna
20
programmed protection
8
pneumococcal transformation
8
r-m systems
8
internalized foreign
8
genetic diversity
8
bacteriophage attack
8
dpnii strains
8
dpnii restriction
8
enabling exchange
8

Similar Publications

The noninvasive prenatal test (NIPT) for genetic screening has been adopted globally as an alternative to first-trimester and quad screening due to its high sensitivity and specificity. NIPT involves detecting and processing foreign fetal DNA in maternal circulation to screen for fetal aneuploidy. An incidental consequence of this process is the detection of foreign tumor cell DNA in maternal circulation in otherwise asymptomatic patients.

View Article and Find Full Text PDF

Despite notable progress in treatment modalities, cancer continues to be a prom-inent cause of death globally. Chemotherapy is the main method used to treat cancer, and chemotherapeutic medications are categorized according to how they work. Nevertheless, the issue of multidrug resistance (MDR) is a significant obstacle, impacting almost 90% of cancer patients who receive chemotherapy or innovative targeted medicines.

View Article and Find Full Text PDF

Genome-wide DNA methylation analysis of sorghum leaves following foreign GA3 exposure under salt stress.

Genomics

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Sorghum is an increasingly popular topic of research in elucidating survival and adaptation approaches to augmented salinity. Nonetheless, little is known about the outcome and modulatory networks involved in the gibberellic acid (GA3)-induced salt stress alleviation in sorghum. Here, we identified 50 mg/L GA3 as the optimal concentration for sorghum ('Jitian 3') development under salt stress.

View Article and Find Full Text PDF

Transgene-free genome editing in poplar.

New Phytol

January 2025

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.

Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!