The optical properties of wurtzite GaN nanowires containing single Al0.14Ga0.86N/GaN quantum discs of different thickness have been investigated. The dependence of the photoluminescence (PL) transition energy on the quantum disc thickness and the thickness of a lateral AlGaN shell has been simulated in the framework of a three-dimensional effective mass model, accounting for the presence of a lateral AlGaN shell, strain state and the piezoelectric and spontaneous polarization. The predicted transition energies are in good agreement with the statistics realized on more than 40 single nanowire emission spectra and PL spectra of ensembles of nanowires. The emission spectra of the single quantum discs exhibit a Lorentzian shape with a homogeneous line width as low as 3 meV. Finally, we discuss the dependence of the interband transition energy on diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/12/125201DOI Listing

Publication Analysis

Top Keywords

optical properties
8
nanowires single
8
single al014ga086n/gan
8
al014ga086n/gan quantum
8
quantum disc
8
quantum discs
8
transition energy
8
lateral algan
8
algan shell
8
emission spectra
8

Similar Publications

Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities.

View Article and Find Full Text PDF

Selective Undercut of Undoped Optical Membranes for Spin-Active Color Centers in 4H- Silicon Carbide.

ACS Nano

January 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.

View Article and Find Full Text PDF

Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!