STIM1 plays a crucial role in Ca(2+) homeostasis, particularly in replenishing the intracellular Ca(2+) store following its depletion. In cardiomyocytes, the Ca(2+) content of the sarcoplasmic reticulum must be tightly controlled to sustain contractile activity. The presence of STIM1 in cardiomyocytes suggests that it may play a role in regulating the contraction of cardiomyocytes. The aim of the present study was to determine how STIM1 participates in the regulation of cardiac contractility. Atomic force microscopy revealed that knocking down STIM1 disrupts the contractility of cardiomyocyte-derived HL-1 cells. Ca(2+) imaging also revealed that knocking down STIM1 causes irregular spontaneous Ca(2+) oscillations in HL-1 cells. Action potential recordings further showed that knocking down STIM1 induces early and delayed afterdepolarizations. Knocking down STIM1 increased the peak amplitude and current density of T-type voltage-dependent Ca(2+) channels (T-VDCC) and shifted the activation curve toward more negative membrane potentials in HL-1 cells. Biotinylation assays revealed that knocking down STIM1 increased T-VDCC surface expression and co-immunoprecipitation assays suggested that STIM1 directly regulates T-VDCC activity. Thus, STIM1 is a negative regulator of T-VDCC activity and maintains a constant cardiac rhythm by preventing a Ca(2+) overload that elicits arrhythmogenic events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2013.02.027DOI Listing

Publication Analysis

Top Keywords

knocking stim1
20
hl-1 cells
16
revealed knocking
12
stim1
11
stim1 participates
8
ca2+
8
activity stim1
8
stim1 increased
8
t-vdcc activity
8
knocking
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!