Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2013.02.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!