Caenorhabditis elegans HAF-4 and HAF-9 are half ABC (ATP-binding-cassette) transporters that are highly homologous to the human lysosomal peptide transporter TAPL [TAP (transporter associated with antigen processing)-like; ABCB9]. We reported previously that both HAF-4 and HAF-9 localize to the membrane of a subset of intestinal organelles, and are required for the formation of these organelles and other physiological aspects. In the present paper, we report the genetic and physical interactions between HAF-4 and HAF-9. Overexpression of HAF-4 and HAF-9 did not rescue the intestinal organelle defect of the haf-9 and haf-4 deletion mutants respectively, indicating that they cannot substitute for each other. Double haf-4 and haf-9 mutants do not exhibit more severe phenotypes than the single mutants, suggesting their co-operative function. Immunoprecipitation experiments demonstrated their physical interaction. The results of the present study suggest that HAF-4 and HAF-9 form a heterodimer. Furthermore, Western blot analysis of the deletion mutants and RNAi (RNA interference) knockdown experiments in GFP (green fluorescent protein)-tagged HAF-4 or HAF-9 transgenic worms suggest that HAF-4-HAF-9 heterodimer formation is required for their stabilization. The findings provide a clue as to how ABC transporters adopt a stable functional form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20130115 | DOI Listing |
Biochem Biophys Res Commun
August 2017
Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan. Electronic address:
Caenorhabditis elegans HAF-4 and HAF-9 are half-type ATP-binding cassette (ABC) transporter proteins, which are highly homologous to the human peptide transporter protein, transporter associated with antigen processing-like (TAPL, ABCB9). TAPL forms homodimers and localizes to lysosomes, whereas HAF-4 and HAF-9 form heterodimers and localize to intestine-specific non-acidified organelles. Both TAPL and HAF-4/HAF-9 are predicted to have four amino-terminal transmembrane helices [transmembrane domain 0 (TMD0)] additional to the six transmembrane helices that form the canonical core domain of ABC transporters with a cytosolic ABC region.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
August 2016
Institute of Parasitology, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada. Electronic address:
Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported.
View Article and Find Full Text PDFBMC Cell Biol
January 2016
Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
Background: The intestinal cells of Caenorhabditis elegans are filled with heterogeneous granular organelles that are associated with specific organ functions. The best studied of these organelles are lipid droplets and acidified gut granules associated with GLO-1, a homolog of the small GTPase Rab38. In this study, we characterized a subset of the intestinal granules in which HAF-4 and HAF-9 localize on the membrane.
View Article and Find Full Text PDFBiochem J
June 2013
Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa-gun, Iwate 028-3694, Japan.
Caenorhabditis elegans HAF-4 and HAF-9 are half ABC (ATP-binding-cassette) transporters that are highly homologous to the human lysosomal peptide transporter TAPL [TAP (transporter associated with antigen processing)-like; ABCB9]. We reported previously that both HAF-4 and HAF-9 localize to the membrane of a subset of intestinal organelles, and are required for the formation of these organelles and other physiological aspects. In the present paper, we report the genetic and physical interactions between HAF-4 and HAF-9.
View Article and Find Full Text PDFMol Biol Cell
June 2009
Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!