AI Article Synopsis

  • Glutathione S-transferase (GST) genes in insects help manage toxins, including insecticides, and contribute to the rapid adaptability of pests like the rice planthoppers Nilaparvata lugens and Sogatella furcifera, which have caused significant outbreaks in eastern Asia.
  • The study mapped the complete GST gene family in N. lugens, noting it has fewer GST genes than other insects, and identified nine orthologs in S. furcifera, with some GST genes showing increased expression when exposed to insecticides.
  • By using RNA interference on specific GST genes in N. lugens, researchers found that silencing certain genes increased the pest's sensitivity to chlorpyrifos, helping

Article Abstract

Background: Glutathione S-transferase (GST) genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop resistance to various insecticides has led to severe outbreaks over the last decade.

Methodology/principal Findings: Using the genome sequence of N. lugens, we identified for the first time the complete GST gene family of a delphacid insect whilst nine GST gene orthologs were identified from the closely related species S. furcifera. Nilaparvata lugens has 11 GST genes belonging to six cytosolic subclasses and a microsomal class, many fewer than seen in other insects with known genomes. Sigma is the largest GST subclass, and the intron-exon pattern deviates significantly from that of other species. Higher GST gene expression in the N. lugens adult migratory form reflects the higher risk of this life stage in encountering the toxins of non-host plants. After exposure to a sub-lethal dose of four insecticides, chlorpyrifos, imidacloprid, buprofezin or beta-cypermethrin, more GST genes were upregulated in S. furcifera than in N. lugens. RNA interference targeting two N. lugens GST genes, NlGSTe1 and NlGSTm2, significantly increased the sensitivity of fourth instar nymphs to chlorpyrifos but not to beta-cypermethrin.

Conclusions/significance: This study provides the first elucidation of the nature of the GST gene family in a delphacid species, offering new insights into the evolution of metabolic enzyme genes in insects. Further, the use of RNA interference to identify the GST genes induced by insecticides illustrates likely mechanisms for the tolerance of these insects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572974PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056604PLOS

Publication Analysis

Top Keywords

gst genes
20
gst gene
16
gene family
12
nilaparvata lugens
12
gst
10
glutathione s-transferase
8
planthoppers nilaparvata
8
sogatella furcifera
8
family delphacid
8
lugens gst
8

Similar Publications

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a chronic lung disease, with its own clinical, radiological and histopathological characteristics, which mainly affects premature newborns, resulting from a combination of factors that include immaturity, inflammation and lung injury, in addition to therapy with mechanical ventilation and exposure to high concentrations of oxygen. However, even with advances in care for critically ill newborns, BPD continues to be a challenge for the care team and family members. This has been identified as one of the most important causes of morbidity and mortality due to prematurity, and can have significant impacts on the quality of life of the affected patients.

View Article and Find Full Text PDF

Expression Analysis of Thirteen Genes in Response to Nifurtimox and Benznidazole in Mexican Isolates of Trypanosoma cruzi by Digital PCR.

Acta Parasitol

January 2025

Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.

Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.

View Article and Find Full Text PDF

Blueberry plants are among the most important fruit-bearing shrubs, but they have shallow, hairless roots that are not conducive to water and nutrient uptake, especially under drought conditions. Therefore, the mechanism underlying blueberry root drought tolerance should be clarified. Hence, we established a yeast expression library comprising blueberry genes associated with root responses to drought stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!