Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574087PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056538PLOS

Publication Analysis

Top Keywords

olfactory cues
12
female mating
8
mating responses
8
male courtship
8
courtship pheromones
8
newts salamandridae
8
male
6
courtship
5
pheromones
5
love blind
4

Similar Publications

Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.

View Article and Find Full Text PDF

Background: While the mother knows best/preference performance hypothesis has been well tested in natural ecosystems, how these ecological principles differ in agroecosystems is less explored. In this study, we investigated the ovipositional preference and offspring performance of fall armyworm (FAW) across vegetative and reproductive stages of soybean.

Results: We examined trichomes, volatile organic compounds (VOCs) and assessed electroantennogram (EAG) measurements to understand how olfactory responses are affected by volatiles at different phenological stages during photoperiodism (photophase and scotophase).

View Article and Find Full Text PDF

Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors.

Neurochem Int

December 2024

Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China. Electronic address:

The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding.

View Article and Find Full Text PDF

Visual identification of conspecifics shapes social behavior in mice.

Curr Biol

December 2024

Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address:

Recognizing conspecifics-others of the same species-in order to determine how to interact with them appropriately is a fundamental goal of animal sensory systems. It has undergone selective pressure in nearly all species. Mice have a large repertoire of social behaviors that are the subject of a rapidly growing field of study in neuroscience.

View Article and Find Full Text PDF

Environmental factors play an important role in phenotypic development of fishes, which has implications for hatchery-reared fishes that are released into the wild where natural cues are present. There is interest in examining how early exposure to dietary odourants can affect development of olfaction. The aim of our study was to use behavioural, molecular and electro-physiological techniques to evaluate how introduction of the amino acid L-alanine to the rearing environment might influence the development of olfactory perception of dietary cues, growth and survival in lake sturgeon (), a species of conservation concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!