A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments ()-1-(,-dimethylamino)ethylferrocene and ()-2-bromoiodoferrocene. The molecular structures of ()-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl(L)] and [RuCl(-cymene)(L)]PF) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584622 | PMC |
http://dx.doi.org/10.1021/om3012147 | DOI Listing |
Chembiochem
January 2025
Universidade Federal de São Carlos: Universidade Federal de Sao Carlos, Departament of Chemistry, 13565-905, São Carlos, BRAZIL.
In this work, we studied six Ruthenium(II)-diphosphine compounds containing different mercapto ligands (N-S), with general formula [Ru(N-S)(dppm)2]Cl (dppm = 1,1-bis(diphenylphosphino)methane). These compounds were characterized by several techniques (NMR [1H, 31P(1H), and 13C], HRMS, IR, UV-Vis and XRD) and their purity confirmed by elemental analysis. DLS experiments revealed low diameters and polydispersity indexes, and positive log P values in n-octanol/PBS indicated their preference for the organic phase.
View Article and Find Full Text PDFChemistry
December 2024
Universiteit Utrecht, Chemistry, Universiteitsweg 99, 3584CG, Utrecht, NETHERLANDS, KINGDOM OF THE.
Nickelacyclobutanes are reactive intermediates in catalytic cycles involving cyclopropanation and insertion reactions. The stoichiometric study of these intermediates has shown that their reactivity is highly influenced by the coordination environment of the nickel center. A pentacoordinated nickelacyclobutane embedded in a diphosphine pincer ligand has been shown to selectively undergo various reactions with exogenous ligands, including [2+2] cycloreversion and carbene transfer to an isocyanide.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
Electrochemical water oxidation holds immense potential for sustainable energy generation, splitting water into clean-burning hydrogen and life-giving oxygen. However, a key roadblock lies in the sluggish nature of the oxygen evolution reaction (OER). Finding stable, cost-effective, and environmentally friendly catalysts with high OER efficiency is crucial to unlock this technology's full potential.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!