The AKT-mTOR pathway is activated in diabetic nephropathy. Renin-angiotensin system modulators exert beneficial effects on the diabetic kidney. We explored the action of losartan on AKT-mTOR phosphorylation in glomeruli and podocytes. Diabetes mellitus was induced to Sprague-Dawley rats by streptozotocin. Five months later, the rats were commenced on losartan and euthanized 2 months later. Kidneys were processed for immunofluorescence studies. Glomeruli were isolated for Western blot analysis. Diabetes increased activated forms of AKT and mTOR both in glomeruli and podocytes. In diabetic rats, losartan decreased phosphorylated/activated forms of AKT (Thr308) and mTOR (Ser2448) in glomeruli but decreased only activated mTOR in podocytes. However, in both glomeruli and podocytes of healthy animals, an inverse pattern was evident. In conclusion, a new body of evidence indicates the differential activation of AKT-mTOR in glomeruli and podocytes of healthy and diabetic animals in response to losartan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715326PMC
http://dx.doi.org/10.1369/0022155413482925DOI Listing

Publication Analysis

Top Keywords

glomeruli podocytes
16
akt mtor
8
diabetic nephropathy
8
forms akt
8
podocytes healthy
8
glomeruli
6
losartan
5
diabetic
5
podocytes
5
losartan glomerular
4

Similar Publications

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

To compare the levels of podocyte damage markers nephrin and podocalyxin in urine samples taken at the time of gestational diabetes mellitus (GDM) diagnosis and at birth. Amniotic fluid podocalyxin (pdx) and nephrin levels were also analyzed to determine whether GDM had an impact on fetal glomeruli. A total of 50 patients, including 24 patients diagnosed with gestational diabetes and 26 healthy pregnant women whose gestational weeks were matched, were included in the study.

View Article and Find Full Text PDF

Antibodies Against Anti-Oxidant Enzymes in Autoimmune Glomerulonephritis and in Antibody-Mediated Graft Rejection.

Antioxidants (Basel)

December 2024

Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy.

Historically, oxidants have been considered mechanisms of glomerulonephritis, but a direct cause-effect correlation has never been demonstrated. Several findings in the experimental model of autoimmune conditions with renal manifestations point to the up-regulation of an oxidant/anti-oxidant system after the initial deposition of autoantibodies in glomeruli. Traces of oxidants in glomeruli cannot be directly measured for their rapid metabolism, while indirect proof of their implications is derived from the observation that Superoxide Oxidase 2 (SOD2) is generated by podocytes after autoimmune stress.

View Article and Find Full Text PDF

In this study, the kidneys of ground squirrels (hibernated and nonhibernated), rabbits, and rats were examined macro and microanatomically. Kidney morphology was investigated by stereo microscopy, light microscopy, and scanning electron microscopy. Triple and immunohistochemical staining were performed for light microscopic examinations.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!