There is a need to develop mechanically active culture systems to better understand the role of mechanical stresses in intervertebral disc (IVD) degeneration. Motion segment cultures that preserve the native IVD structure and adjacent vertebral bodies are preferred as model systems, but rapid ex vivo tissue degeneration limits their usefulness. The stability of rat and rabbit IVDs is of particular interest, as their small size makes them otherwise suitable for motion segment culture. The goal of this study was to determine if there are substantial differences in the susceptibility of rat and rabbit IVDs to culture-induced degeneration. Lumbar IVD motion segments were harvested from young adult male Sprague-Dawley rats and New Zealand White rabbits and cultured under standard conditions for 14 days. Biochemical assays and safranin-O histology showed that while glycosaminoglycan (GAG) loss was minimal in rabbit IVDs, it was progressive and severe in rat IVDs. In the rat IVD, GAG loss was concomitant with the loss of notochordal cells and the migration of endplate (EP) cells into the nucleus pulposus (NP). None of these changes were evident in the rabbit IVDs. Compared to rabbit IVDs, rat IVDs also showed increased matrix metalloproteinase-3 (MMP-3) and sharply decreased collagen type I and II collagen expression. Together these data indicated that the rabbit IVD was dramatically more stable than the rat IVD, which showed culture-related degenerative changes. Based on these findings we conclude that the rabbit motion segments are a superior model for mechanobiologic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.22285 | DOI Listing |
Biomedicines
July 2024
Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, 89081 Ulm, Germany.
Previous studies indicate an implication of the terminal complement complex (TCC) in disc degeneration (DD). To investigate the functional role of TCC in trauma-induced DD in vivo, the model of endplate (EP) drilling was first applied in rabbits using a C6-deficient rabbit strain in which no TCC formation was possible. In parallel the model of needle puncture was investigated.
View Article and Find Full Text PDFCells
June 2024
Department of Orthopedic Surgery, Hokkaido University Hospital, N14W5, Sapporo, Hokkaido 060-8638, Japan.
Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China.
Stem cell transplantation is proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel is proposed for BMSC transplantation for IDD therapy.
View Article and Find Full Text PDFEur Spine J
May 2024
Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, NSW, Australia.
Purpose: To evaluate the biological and biomechanical effects of fenestration/microdiscectomy in an in vivo rabbit model, and in doing so, create a preclinical animal model of IVDD.
Methods: Lateral lumbar IVD fenestration was performed in vivo as single- (L3/4; n = 12) and multi-level (L2/3, L3/4, L4/5; n = 12) fenestration in skeletally mature 6-month-old New Zealand White rabbits. Radiographic, micro-CT, micro-MRI, non-destructive robotic range of motion, and histological evaluations were performed 6- and 12-weeks postoperatively.
Arthritis Res Ther
November 2023
Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
Background: Intradiscal condoliase injection is an alternative therapeutic option for lumbar disc herniation (LDH). However, it is often associated with disc degeneration. Several in vivo studies have demonstrated the regenerative potential of platelet-rich plasma (PRP) in disc degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!