Hypoxic-ischemic injury increases neuroglobin (Ngb) expression in the brain. In our previous study, we have generated a transactivator-of-transcription protein-transduction domain-neuroglobin fusion protein (TAT PTD-Ngb) that successfully mediated exogenous Ngb expression in the primary neurons. In this study, we further investigated the role of TAT PTD-Ngb in protecting neurons against hypoxia-induced apoptosis and explored the possible mechanism. The primary cultured neurons were divided into four groups: (1) the normal group (no hypoxic injury); (2) the vehicle group (vehicle treatment and hypoxia injury); (3) the TAT PTD-Ngb group (TAT PTD-Ngb treatment and hypoxia injury); and (4) the Ngb group (Ngb treatment and hypoxia injury). Translocation of TAT PTD-Ngb into neurons was detected using fluorescent immunostaining against His-tag as early as 30 min after incubation. MTT assay showed that the TAT PTD-Ngb group had significantly increased cell viability compared to the vehicle or Ngb group after hypoxia. The result of transmission electron microscopy (TEM) also displayed rescued ultrastructure in TAT PTD-Ngb neurons compared to that of apoptotic neurons. In addition, TAT PTD-Ngb neurons showed significantly increased expression of anti-apoptotic Bcl-2 protein and decreased activities of caspase-3 and caspase-9 in response to hypoxia. These results suggest that TAT PTD-Ngb fusion protein protects primary cortical neurons against hypoxia-induced injury possibly through suppressing mitochondria apoptotic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-013-1333-9DOI Listing

Publication Analysis

Top Keywords

tat ptd-ngb
40
fusion protein
12
neurons hypoxia-induced
12
treatment hypoxia
12
hypoxia injury
12
ptd-ngb neurons
12
ptd-ngb
10
neurons
9
tat
9
ptd-ngb fusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!