Aims: Uraemia is a strong risk factor for cardiovascular disease. Osteopontin (OPN) is highly expressed in aortas of uraemic apolipoprotein E knockout (E KO) mice. OPN affects key atherogenic processes, i.e. inflammation and phenotypic modulation of smooth muscle cells (SMCs). We explored the role of OPN on vascular pathology in uraemic mice.

Methods And Results: Uraemia was induced by 5/6 nephrectomy in E KO and in OPN and E double KO mice (E/OPN KO). In E KO mice, uraemia increased the relative surface plaque area in the aortic arch (from 28 ± 2% [n = 15], to 37 ± 3% [n = 20] of the aortic arch area, P < 0.05). A positive correlation was observed between plasma OPN and aortic atherosclerosis in uraemic E KO mice (r(2) = 0.48, P = 0.001). In contrast, aortic atherosclerosis was not increased by uraemia in E/OPN KO mice. OPN deficiency in haematopoietic cells (including macrophages) did not affect development of uraemic atherosclerosis, even though OPN-deficient foam cells had decreased inflammatory capacity. Gene expression analyses indicated that uraemia de-differentiates SMCs in the arterial wall. This effect was dampened in whole-body OPN-deficient mice.

Conclusion: The data suggest that OPN promotes development of uraemic atherosclerosis possibly by changing the phenotype of vascular smooth muscle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvt049DOI Listing

Publication Analysis

Top Keywords

mice opn
8
smooth muscle
8
muscle cells
8
e/opn mice
8
aortic arch
8
aortic atherosclerosis
8
development uraemic
8
uraemic atherosclerosis
8
opn
7
uraemia
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!