This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 10(6) copies ml(-1) in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-013-0879-5DOI Listing

Publication Analysis

Top Keywords

green sulfur
12
sulfur bacteria
12
lake suigetsu
12
meromictic lake
8
dissimilatory sulfite
8
sulfite reductase
8
reductase gene
8
sulfur-oxidizing bacterial
8
dsra clones
8
chemocline lake
8

Similar Publications

On-Demand Continuous Flow Synthesis of Pentafluorosulfanyl Chloride (SFCl) Using a Custom-Made Stirring Packed-Bed Reactor.

Chemistry

January 2025

Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.

The pentafluorosulfanyl (SF-) group has been the subject of a surge of interest in the past decade, but there is still little practicality associated with its synthesis and installation. Herein is reported the first continuous flow synthesis of pentafluorosulfanyl chloride (SFCl), the most common reagent for the synthesis of SF-substituted compounds. The synthesis is based on inexpensive and easy-to-handle reagents: sulfur powder (S), trichloroisocyanuric acid (TCCA) and potassium fluoride (KF).

View Article and Find Full Text PDF

Comparative genomics analysis of the reason for C heavy-ion irradiation in improving FeO nanoparticle yield of Acidithiobacillus ferrooxidans.

Ecotoxicol Environ Saf

January 2025

Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:

The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.

View Article and Find Full Text PDF

According to the FAO, 828 million people were facing acute food insecurity in 2021. Fertilization is a critical input factor in crop production and food security achievement. Therefore, fertilization is a critical input factor in crop production and food security achievement.

View Article and Find Full Text PDF

Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.

View Article and Find Full Text PDF

Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!