The aim of this study was to assess the effect of high-pressure polymerization on mechanical properties of denture base resin. A heat-curing denture base resin and an experimental PMMA were polymerized under 500MPa of pressure by means of an isostatic pressurization machine at 70°C for 24h to make rectangular specimens whose dimensions were 30mm×2mm×2mm. Each specimen was deflected on a three-point flexural test until either fracture occurred or the sample was loaded up to 8mm in deflection. The molecular weight of the PMMA without filler was analyzed using the high-speed liquid chromatography system. Increased ductility without fracture was shown in the specimens subjected to high pressure, while most of the control specimens (ambient pressure) fractured. The mean toughness of the PMMA specimens polymerized under the high pressure was significantly higher than the same material polymerized under ambient pressure (p<0.01). The high pressure groups of the denture resin and the PMMA revealed a significantly lower mean 0.2% yield stress, flexural strength, and elastic modulus than control groups (p<0.01). There were certain amounts of higher molecular weight polymers in the high pressure specimens than were present in the controls. The increased toughness shown in the PMMA polymerized under the high pressure was presumably attributed to the higher molecular weight produced by the pressure. The result suggests a potential application of the high-pressure polymerization to the development of PMMA-based denture resin with improved fracture resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2012.12.011 | DOI Listing |
Polymers (Basel)
December 2024
Department of Prosthodontics, Faculty of Dentistry, University of Abant İzzet Baysal, 14030 Bolu, Turkey.
This study evaluated the color stability, surface roughness, and hardness of 3D-printed and heat-polymerized denture materials. A total of 90 samples were prepared, with equal numbers of 3D-printed and heat-polymerized disks. The initial hardness, surface roughness, and color values of the samples were measured.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, Maharashtra, India, ORCID: https://orcid.org/0000-0002-6661-0931.
Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).
Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.
J Prosthet Dent
January 2025
Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.
Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.
Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.
Sci Rep
January 2025
Department of Pediatric Dentistry Faculty of Dental Medicine, University of Damascus, Damascus, Syria.
This in vitro study aims to evaluate various surface treatments on the shear bond strength and failure mode of CAD/CAM PMMA teeth to the heat-polymerized acrylic denture base. The study sample consisted of 100 teeth that were divided equally into five groups: Group 1: denture artificial teeth (control), Group 2: PMMA teeth without surface treatment, Group 3: PMMA teeth with MMA etching, Group 4: PMMA teeth with sandblasting (aluminum oxide particles), and Group 5: PMMA teeth with perpendicular grooves. The shear bond strength test was performed using a universal testing machine and the failure mode was recorded.
View Article and Find Full Text PDFDent Mater
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Preclinical Dentistry, Semmelweis University, Budapest, Hungary. Electronic address:
Objectives: This systematic review and network meta-analysis aimed to compare different PMMA (polymethyl methacrylate) complete denture base manufacturing techniques by evaluating their mechanical properties. The objective was to determine which method-compression molding, injection molding, milling, or 3D printing-offers the best performance.
Data: In vitro studies investigating mechanical properties of PMMA denture base resins.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!