Broadband infrared luminescence in γ-ray irradiated bismuth borosilicate glasses.

Opt Lett

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: February 2013

The influence of γ-ray irradiation on the optical properties of Bi(2)O(3)-B(2)O(3)-SiO(2) glass has been investigated. Broadband infrared (IR) emission at 1310 nm with a FWHM over 200 nm is observed in the γ-ray irradiated glass. The IR luminescence depends on the γ-ray irradiation dose and the concentration of Bi(2)O(3). The thermal stability of the γ-ray irradiated IR luminescence center is studied, and the origin of the IR luminescence center has been suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.000516DOI Listing

Publication Analysis

Top Keywords

γ-ray irradiated
12
broadband infrared
8
γ-ray irradiation
8
luminescence center
8
γ-ray
5
luminescence
4
infrared luminescence
4
luminescence γ-ray
4
irradiated bismuth
4
bismuth borosilicate
4

Similar Publications

Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.

View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Purpose: The aim of this study was to identify prognostic factors influencing overall survival (OS) in patients with gastric cancer treated with adjuvant chemoradiotherapy (CRT) and to develop a predictive model.

Methods: We retrospectively evaluated 245 non-metastatic gastric cancer patients who received adjuvant CRT or radiotherapy from 2010 to 2020. Survival analyses were performed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!