Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We design and numerically analyze a dynamically tunable, plasmonically induced transparency (PIT) planar hybrid metamaterial (MM) in a near-infrared regime, which combines the near-field coupling effect into dynamic MM. The embedded position of tunable material in dynamic MM is optimized. Thermal-tunable VO(2) stripes are filled in the cut-out slots as components of a plasmonic system, which dramatically improve the dynamic modulation depth of the PIT. We also present a four-level plasmonic system to quantitatively analyze the dynamically tunable PIT device. This work may offer a further step in the design of the tunable PIT effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.000483 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!