We propose and experimentally demonstrate the use of cyclic pulse coding to improve the performance of hybrid Raman/fiber Bragg grating (FBG) fiber-optic sensors, for simultaneous measurement of distributed static temperature and discrete dynamic strain over the same sensing fiber. Effective noise reduction is achieved in both Raman optical time-domain reflectometry and dynamic interrogation of time-division-multiplexed fiber FBG sensors, enhancing the sensing range resolution and providing real-time point dynamic strain measurement capabilities. The highly integrated sensor scheme employs broadband apodized low-reflectivity FBGs, a single narrowband optical source, and a shared receiver block.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.38.000471DOI Listing

Publication Analysis

Top Keywords

hybrid raman/fiber
8
raman/fiber bragg
8
bragg grating
8
cyclic pulse
8
pulse coding
8
dynamic strain
8
high-performance hybrid
4
grating fiber-optic
4
fiber-optic sensor
4
sensor based
4

Similar Publications

By focusing on a typical emitting wavelength of 1120 nm as an example, we present the first, to the best of our knowledge, demonstration of a high-efficiency, narrow-linewidth kilowatt-level all-fiber amplifier based on hybrid ytterbium-Raman (Yb-Raman) gains. Notably, two temporally stable, phase-modulated single-frequency lasers operating at 1064 nm and 1120 nm, respectively, were applied in the fiber amplifier, to simultaneously alleviate the spectral broadening of the 1120 nm signal laser and suppress the stimulated Brillouin scattering effect. An over 1 kW narrow-linewidth 1120 nm signal laser was obtained with slope efficiency of ${\sim}{77}\% $∼77% and beam quality of ${\rm M}_x^2\sim {1.

View Article and Find Full Text PDF

In this paper, the spectral evolution properties and gain dynamics in hybrid rare-earth-Raman fiber amplifiers (H-RFAs) are demonstrated theoretically. Spectral broadening mechanisms and design strategies are given for H-RFAs based on two different types of pump schemes for generating the pump laser of Raman gain. As for the diode-pumped scheme, only a temporal stable pump laser of Raman gain is required to achieve the narrow-linewidth operation of an ultimate Raman fiber laser.

View Article and Find Full Text PDF

Actively mode locked Raman lasing in a ring PM-fiber cavity pumped by a linearly polarized Yb-doped fiber laser is studied. At co-propagating pumping, a stochastic pulse with duration defined by the AOM switching time (~15 ns) is generated with the round-trip period. At counter-propagating pumping, one or several sub-ns pulses (within the AOM switching envelope) are formed.

View Article and Find Full Text PDF

We demonstrate a tunable multi-wavelength Brillouin-Raman fiber laser with 20 GHz wavelength spacing. The setup is arranged in a linear cavity by employing 7.2 and 11 km dispersion compensating fibers (DCF) in addition to a 30 cm Bismuth-oxide erbium doped fiber.

View Article and Find Full Text PDF

We propose and experimentally demonstrate the use of cyclic pulse coding to improve the performance of hybrid Raman/fiber Bragg grating (FBG) fiber-optic sensors, for simultaneous measurement of distributed static temperature and discrete dynamic strain over the same sensing fiber. Effective noise reduction is achieved in both Raman optical time-domain reflectometry and dynamic interrogation of time-division-multiplexed fiber FBG sensors, enhancing the sensing range resolution and providing real-time point dynamic strain measurement capabilities. The highly integrated sensor scheme employs broadband apodized low-reflectivity FBGs, a single narrowband optical source, and a shared receiver block.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!