Although an important event in hyperglycaemia-induced oxidative stress is the nuclear factor-kappa b (NF-κB)-activated inducible nitric oxide synthase (iNOS) expression, the underlying mechanism is not fully characterized. Peroxynitrite, formed from NO and superoxide, can induce multiple proteins nitration, even including NF-κB and iNOS, to alter their functions. In this study, we found high glucose caused conspicuous nitration of nuclear NF-κB p65 and its co-activator p300 in human lens epithelial cells. The nitration of NF-κB and p300 promoted their co-localization and binding to ensure the activation of the iNOS gene transcription. Moreover, nearly all predicted NF-κB binding sites in the human iNOS gene promoter were responsive to high glucose stimulation, might for a synergistic role. While, only the NF-κB binding site -5212 showed significant alterations by high glucose and peroxynitrite stimulations, indicating it a more important role in the protein nitration promoted iNOS gene transcription. Our results demonstrated that protein nitration can promote the NF-κB-activated iNOS gene transcription in human lens epithelial cells by high glucose stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2013.02.015 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
December 2024
Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.
Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.
View Article and Find Full Text PDFNutr J
December 2024
Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
Background: Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.
View Article and Find Full Text PDFMol Med
December 2024
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Metabolic syndrome (MetS) is an indicator and diverse endocrine syndrome that combines different metabolic defects with clinical, physiological, biochemical, and metabolic factors. Obesity, visceral adiposity and abdominal obesity, dyslipidemia, insulin resistance (IR), elevated blood pressure, endothelial dysfunction, and acute or chronic inflammation are the risk factors associated with MetS. Abdominal obesity, a hallmark of MetS, highlights dysfunctional fat tissue and increased risk for cardiovascular disease and diabetes.
View Article and Find Full Text PDFSci Rep
December 2024
General Practice Medical Center, West China Hospital, General Practice Ward/International Medical Center Ward, National Clinical Research Center for Geriatrics,, Sichuan University, Chengdu, Sichuan, China.
The triglyceride-glucose (TyG) index and the Atherogenic Index of Plasma (AIP) are both predictors of cardiovascular diseases (CVD). However, their combined and individual contributions to CVD risk are not well understood. This study evaluate the joint and individual associations of the TyG index and AIP with CVD events in middle-aged and older Chinese adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!