B cell antigen receptor (BCR) signaling is positively and negatively regulated by various cell surface receptors such as CD19 and CD45. Functional analysis of these receptors has been performed using gene targeting technology, which is a valid approach to elucidate their functions. However, this type of analysis is restricted when multiple molecules are evaluated simultaneously. From a different perspective, synthetic biology provides a high degree of freedom for analyzing various molecules. Here we developed a system to reconstruct BCR signaling using the J558L myeloma cell line in combination with the protein-based Ca(2+) indicator YC3.60. BCR-reconstituted J558L cells harboring YC3.60 (J558Lμv11 cells) permitted monitoring of Ca(2+) mobilization. Reconstituting CD19 in J558Lμv11 cells resulted in detectable BCR-induced Ca(2+) mobilization but with kinetics different from that of CD45-expressing cells. Furthermore, we evaluated the validity of the J558L system by proteomic analysis of tyrosine-phosphorylated proteins after antigen stimulation. Identification of more than 100 BCR-induced tyrosine-phosphorylated proteins in J558Lμv11 cells revealed a similarity to that observed in B cells, and a novel member, non-receptor protein tyrosine kinase Fer, was found. Thus, this reconstruction system using J558L cells appeared to be valid for comprehensively investigating BCR signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2013.02.008 | DOI Listing |
LAIR1 is an inhibitory receptor broadly expressed on human immune cells, including B cells. LAIR1 has been shown to modulate BCR signaling, however, it is still unclear whether its suppressive activity can be a negative regulator for autoreactivity. In this study, we demonstrate the LAIR1 expression profile on human B cells and prove its regulatory function and relationships to B cell autoreactivity.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.
Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA.
BCR::ABL1-like B-lymphoblastic leukaemia (B-ALL) neoplasms lack the BCR::ABL1 translocation but have a gene expression profile like BCR::ABL1 positive B-ALL. This includes alterations in cytokine receptors and signalling genes, such as and Cases with CRLF2 rearrangements account for approximately 50% of cases of Philadelphia-like acute lymphoblastic leukaemia (Ph-like ALL), and the frequency of specific genomic lesions varies with ethnicity such that IGH::CRLF2 translocations are more common in Hispanics and Native Americans.We report two cases of BCR::ABL1-like ALL, with significant eosinophilia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!