A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. | LitMetric

Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams.

Aquat Toxicol

Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada.

Published: May 2013

Biomagnification processes and the factors that govern them, including those for mercury (Hg), are poorly understood in streams. Total and methyl Hg concentrations and relative trophic position (using δ(15)N) were analyzed in biofilm and invertebrates from 21 streams in New Brunswick, Canada to assess food web biomagnification leading to the common minnow blacknose dace (Rhinichthys atratulus), a species known to have Hg concentrations that are higher in low pH waters. Biomagnification slopes within stream food webs measured using Hg vs. δ(15)N or corresponding trophic levels (TL) differed depending on the chemical species analyzed, with total Hg exhibiting increases of 1.3-2.5 per TL (mean slope of total Hg vs. δ(15)N=0.14±0.06 S.D., range=0.06-0.20) and methyl Hg showing a more pronounced increase of 2.8 to 6.0 per TL (mean slope of methyl Hg vs. δ(15)N=0.30±0.08 S.D., range=0.22-0.39). While Hg biomagnification slopes through the entire food web (Trophic Magnification Factors, TMFs) were not influenced by water chemistry (pH), dietary concentrations of methyl Hg strongly influenced biomagnification factors (BMFs) for consumer-diet pairs within the food web at lower trophic levels, and BMFs between dace and predatory invertebrates were significantly higher in low pH waters. These analyses, coupled with observations of higher Hg in primary producers in streams with low pH, suggest that pH influences both baseline concentrations and biomagnification of Hg in these systems. Because higher Hg concentrations in the diets of primary consumers and predatory insects in lower pH waters led to lower BMFs, these feeding groups showed insignificant relationships between Hg and pH; thus, altered BMFs associated with dietary concentrations can dampen the effects of environmental conditions on Hg concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2013.01.013DOI Listing

Publication Analysis

Top Keywords

food web
16
trophic levels
12
higher low
8
low waters
8
biomagnification slopes
8
dietary concentrations
8
concentrations
7
biomagnification
6
food
5
trophic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!