The ATR-ATRIP protein kinase complex plays a crucial role in the cellular response to replication stress and DNA damage. Recent studies found that ATR could be activated in response to hypoxia and be involved in hypoxia-induced genetic instability in cancer cells. However, the underlying mechanisms for ATR activation in response to hypoxic stress are still not fully understood. We reported that ATRIP is a direct target of HIF-1. Silencing the expression of HIF-1α in cancer cells by RNA interference abolished hypoxia-induced ATRIP expression. Silencing the expression of ATRIP by RNA interference abolished hypoxia induced ATR activation and CHK1 phosphorylation in cancer cells. Taken together, these data shed novel insights on the mechanism of hypoxia-induced activation of the ATR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2013.02.020 | DOI Listing |
Cell Death Discov
January 2025
Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with poor prognosis. Antibody-drug conjugates (ADCs) and their combinations with various anti-tumor drugs have made great progress. Camptothecin, and its derivatives (Dxd, SN-38 or exatecan) targeted TOP1 are effective payloads due to their potent anti-tumor activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
Background: In a previous study, we found that Atractylodes macrocephala and Paeoniae radix (AM-PR) was useful for the alleviation of functional constipation (FC). However, the precise mechanism underlying the compatibility between AM and PR in the treatment of FC remains uncertain. This study aims to analyze the pharmacokinetic differences in the active ingredients in the blood of rat models with FC when applied individually and in combination with AM-PR.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!