Regulation of the enzootic cycle in Borrelia burgdorferi requires a shift to the RNA polymerase alternative sigma factor, RpoS. We used in vitro and in vivo assays to assess the relative importance of the putative Shine-Dalgarno sequence and its sequestration for the translational efficiency of rpoS. We created mutant leader regions in which we either removed the Shine-Dalgarno sequence, disrupted the secondary structure or both. Binding assays and toeprint assays demonstrated that both the presence and the availability of the Shine-Dalgarno sequence are important to the efficiency and specificity of ribosome binding. Adding a DsrABb mimic in the form of a single-stranded DNA oligonucleotide increased the level and specificity of binding ribosomes to the transcript with an extended leader, presumably by making the Shine-Dalgarno sequence available for binding. In in vivo assays we confirmed that the Shine-Dalgarno sequence must be both present and un-sequestered in order for translation to proceed efficiently. The longer transcript was significantly better translated in B. burgdorferi at 37 °C than at 26 °C, lending support to the hypothesis that DsrABb acts as a temperature-dependent stimulator of translation. These studies demonstrate that translational regulation of gene expression in B. burgdorferi may be an important mechanism for responding to environmental signals important in the enzootic cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616328PMC
http://dx.doi.org/10.1016/j.bbrc.2013.02.063DOI Listing

Publication Analysis

Top Keywords

shine-dalgarno sequence
20
translational efficiency
8
efficiency rpos
8
borrelia burgdorferi
8
enzootic cycle
8
vivo assays
8
sequence
6
shine-dalgarno
5
rpos mrna
4
mrna borrelia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!