Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury.

Free Radic Biol Med

Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.

Published: July 2013

Acetaminophen (APAP), a widely used analgesic/antipyretic agent, can cause liver injury through increased nitrative stress, leading to protein nitration. However, the identities of nitrated proteins and their roles in hepatotoxicity are poorly understood. Thus, we aimed at studying the mechanism of APAP-induced hepatotoxicity by systematic identification and characterization of nitrated proteins in the absence or presence of an antioxidant, N-acetylcysteine (NAC). The levels of nitrated proteins markedly increased at 2h in mice exposed to a single APAP dose (350mg/kg ip), which caused severe liver necrosis at 24h. Protein nitration and liver necrosis were minimal in mice exposed to nontoxic 3-hydroxyacetanilide or animals co-treated with APAP and NAC. Mass-spectral analysis of the affinity-purified nitrated proteins identified numerous mitochondrial and cytosolic proteins, including mitochondrial aldehyde dehydrogenase, Mn-superoxide dismutase, glutathione peroxidase, ATP synthase, and 3-ketoacyl-CoA thiolase, involved in antioxidant defense, energy supply, or fatty acid metabolism. Immunoprecipitation followed by immunoblot with anti-3-nitrotyrosine antibody confirmed that the aforementioned proteins were nitrated in APAP-exposed mice but not in NAC-cotreated mice. Consistently, NAC cotreatment significantly restored the suppressed activity of these enzymes. Thus, we demonstrate a new mechanism by which many nitrated proteins with concomitantly suppressed activity promotes APAP-induced mitochondrial dysfunction and hepatotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680365PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.018DOI Listing

Publication Analysis

Top Keywords

nitrated proteins
20
protein nitration
12
mitochondrial dysfunction
8
liver injury
8
mice exposed
8
liver necrosis
8
suppressed activity
8
proteins
7
nitrated
6
robust protein
4

Similar Publications

Autophagy is a protective mechanism of cardiomyocytes. Hyperhomocysteinemia (HHcy) elevates oxidative and nitrosative stress levels, leading to an abnormal increase in nitration protein, possibly leading to abnormal autophagy regulation in cardiomyocytes. However, the regulatory effect of HHcy on autophagy at the post-translational modification level is still unclear.

View Article and Find Full Text PDF

Previously, we confirmed systemic antihypertensive and antioxidant properties of L. leaf extract (UE) in spontaneously hypertensive rats (SHR). Here, we aimed to evaluate whether UE can alter the NO and Nrf-2 signaling to prevent local oxidative stress and kidney damage in the model of essential hypertension.

View Article and Find Full Text PDF

Nitration of Tyr37 alters the aggregation pathway of hIAPP and enhances its cytotoxicity.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China. Electronic address:

The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP.

View Article and Find Full Text PDF
Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF
Article Synopsis
  • - Glycolipid antigens are recognized by CD1d on antigen-presenting cells and trigger immune responses in NKT cells through cytokine release.
  • - The study discovered a specific glycolipid (α-GalCer nitro-type) that selectively induces Th2 and Th17 cytokines and has a strong binding affinity to CD1d due to modified fatty acyl groups.
  • - The introduction of natural nitroalkene groups in these glycolipids enhances their interaction with CD1d, which helps explain their unique role in cytokine induction and selectivity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!