A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. | LitMetric

UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma.

J Chromatogr B Analyt Technol Biomed Life Sci

Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.

Published: May 2013

We developed and validated a fast UPLC-MS/MS method with positive electrospray ionization (ESI+) for the quantitative determination of S-nitrosoglutathione (GSNO) in human plasma. We used a published protocol for the inactivation of plasma γ-glutamyltransferase (γGT) activity by using the γGT transition inhibitor serine/borate and the chelator EDTA for the stabilization of GSNO, and N-ethylmaleimide (NEM) to block SH groups and to avoid S-transnitrosylation reactions which may diminish GSNO concentration. S-[(15)N]Nitrosoglutathione (GS(15)NO) served as internal standard. Fresh blood was treated with NEM/serine/borate/EDTA, plasma spiked with GS(15)NO (50nM) was ultrafiltered (cut-off 10kDa) and 10μL aliquots of the ultrafiltrate were analyzed by UPLC-MS/MS. Five HILIC columns and an Acquity UPLC BH amide column were tested. The mobile phase was acetonitrile-water (70:30, v/v), contained 20mM ammonium formate, had a pH value of 7, and was pumped isocratically (0.5mL/min). The Nucleoshell column allowed better LC performance and higher MS sensitivity. The retention time of GSNO was about 1.1min. Quantification was performed by selected-reaction monitoring the mass transition m/z 337 ([M+H](+))→m/z 307 ([M+H(14)NO](+)) for GSNO (i.e., GS(14)NO) and m/z 338 ([M+H](+))→m/z 307 ([M+H(15)NO](+)) for GS(15)NO. NEM/serine/borate/EDTA was found to stabilize GSNO in human plasma. The method was validated in human plasma (range, 0-300nM) using 50nM GS(15)NO. Accuracy and precision were in generally acceptable ranges. A considerable matrix effect was observed, which was however outweighed by the internal standard GS(15)NO. In freshly prepared plasma from heparinized blood donated by 10 healthy subjects, no endogenous GSNO was determined above 2.8nM, the limit of quantitation (LOQ) of the method. This study challenges previously reported GSNO plasma concentrations being far above the present method LOQ value and predicts that the concentration of low-molecular-mass and high-molecular-mass S-nitrosothiols are in the upper pM- and lower nM-range, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2013.01.023DOI Listing

Publication Analysis

Top Keywords

human plasma
16
gsno human
12
gsno
9
s-nitrosoglutathione gsno
8
plasma
8
internal standard
8
[m+h]+→m/z 307
8
gs15no
5
uplc-ms/ms measurement
4
measurement s-nitrosoglutathione
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!