In the mammalian circadian clockwork, CRY1 and CRY2 repressor proteins are regulated by posttranslational modifications for temporally coordinated transcription of clock genes. Previous studies revealed that FBXL3, an F-box-type E3 ligase, ubiquitinates CRYs and mediates their degradation. Here, we found that FBXL21 also ubiquitinates CRYs but counteracts FBXL3. Fbxl21(-/-) mice exhibited normal periodicity of wheel-running rhythms with compromised organization of daily activities, while an extremely long-period phenotype of Fbxl3(-/-) mice was attenuated in Fbxl3/Fbxl21 double-knockout mice. The double knockout destabilized the behavioral rhythms progressively and sometimes elicited arrhythmicity. Surprisingly, FBXL21 stabilized CRYs and antagonized the destabilizing action by FBXL3. Predominantly cytosolic distribution of FBXL21 contrasts with nuclear localization of FBXL3. These results emphasize the physiological importance of antagonizing actions between FBXL21 and FBXL3 on CRYs, and their combined actions at different subcellular locations stabilize oscillation of the circadian clock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2013.01.054 | DOI Listing |
Biochim Biophys Acta Bioenerg
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.
View Article and Find Full Text PDFNeuroscience
January 2025
Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland. Electronic address:
Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile. Electronic address:
It is well established that sleep promotes health and welfare. Literature data suggests that sleep is a recurrent resting state that performs multiple biological functions, such as memory consolidation and regulation of glucose, lipid metabolism, energy metabolism, eating behavior, and blood pressure, besides, regulating the immune system. These immunological functions depend on regular sleep and circadian rhythms, as both impact the magnitude of immune responses.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia.
Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!