In this work carbon nanotubes assisted electromembrane extraction (CNTs/EME) coupled with capillary electrophoresis (CE) and ultraviolet (UV) detection was developed for the determination of buprenorphine as a model of basic drugs from urine samples. Carbon nanotubes reinforced hollow fiber was used in this research. Here the CNTs serve as a sorbent and provide an additional pathway for solute transport. The presence of CNTs in the hollow fiber wall increased the effective surface area and the overall partition coefficient on the membrane; and lead to an enhancement in the analyte transport. For investigating the influence of the presence of CNTs in the SLM on the extraction efficiency, a comparative study was carried out between EME and CNTs/EME methods. Optimization of the variables affecting these methods was carried out in order to achieve the best extraction efficiency. Optimal extractions were accomplished with NPOE as the SLM, with 200V as the driving force, and with pH 2.0 in the donor and pH 1.0 in the acceptor solutions with the whole assembly agitated at 750rpm after 25min and 15min for EME and CNTs/EME, respectively. Under the optimized conditions, in comparison with the conventional EME method, CNTs/EME provided higher extraction efficiencies in shorter time. This method provided lower limit of detection (1ngmL(-1)), higher preconcentration factor (185) and higher recovery (92). Finally, the applicability of this method was evaluated by the extraction and determination of buprenorphine in patients' urine samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2012.12.046DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
determination buprenorphine
12
urine samples
12
nanotubes assisted
8
assisted electromembrane
8
electromembrane extraction
8
extraction cnts/eme
8
buprenorphine model
8
model basic
8
basic drugs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!