A systematic study on the high-temperature Torch Integrated Sample Introduction System (TISIS) for use in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has been performed. The investigation included the optimization of the relevant parameters (chamber temperature, sheathing gas flow rate, nebulizer gas flow rate, sample uptake rate), the evaluation of its performance characteristics (sensitivity, limits of detection, stability, memory effects, use with the dynamic reaction cell) and representative applications to environmental, biological and clinical samples. Under the optimal conditions (T=150°C; nebulizer gas flow rate of 0.7Lmin(-1) along with sheathing gas flow rate of 0.35Lmin(-1) and a sample uptake rate of 20μLmin(-1)), the sensitivity was from 2 to 8 times higher than that measured using a conventional micronebulizer/mini-spray chamber system, due to the enhanced analyte mass transport toward the plasma and the solvent introduction in the vapour form. In addition, for several elements, TISIS provided lower limits of detection than the conventional system, even when the latter worked at 5-fold higher sample uptake rate. Short-term and long-term precision was better than 5%. Spectroscopic interferences arising from common matrices were efficiently removed by the dynamic reaction cell technique. The application of TISIS/ICP-MS to representative certified reference samples (spinach leaves, marine plankton, bone tissue, human blood) proved the suitability of this system for the accurate analysis of limited-size samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2013.01.017 | DOI Listing |
Sci Rep
January 2025
Laboratory of Engineering Profile, Satbayev University, Satbayev St. 22a, 050013, Almaty, Kazakhstan.
Several mechanisms were postulated to reduce drilling problems, improve hole cleaning characteristics, and keep the bit in good condition for the second usage. This study was conducted on Majnoon Field in southeastern Iraq to optimize the bit and drilling parameters. The results indicated that the 16" SFD75D bit proved the preferred bit for both vertical and deviated wells due to its directional capabilities.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFJ Clin Anesth
January 2025
Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, Detroit, MI, USA. Electronic address:
CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.
During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!