The advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927612014419DOI Listing

Publication Analysis

Top Keywords

atomic resolution
12
ambient pressure
12
pressure gas
12
gas path
12
gas cell
8
cell holder
8
electron microscopy
8
resolution imaging
8
path lengths
8
lengths μm
8

Similar Publications

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Apolipoprotein E3 and E4 isoforms exhibit differing effects in countering endotoxins.

J Biol Chem

January 2025

Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden. Electronic address:

Apolipoprotein E (APOE) is distributed across various human tissues and plays a crucial role in lipid metabolism. Recent investigations have uncovered an additional facet of APOE's functionality, revealing its role in host defense against bacterial infections. To assess the antibacterial attributes of APOE3 and APOE4, we conducted antibacterial assays using P.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Quantum Thermodynamic Derivation of the Energy Resolution Limit in Magnetometry.

Phys Rev Lett

December 2024

University of Crete, Department of Physics, Heraklion 70013, Greece.

It was recently demonstrated that a multitude of realizations of several magnetic sensing technologies satisfy the energy resolution limit, which connects a quantity composed by the variance of the magnetic field estimate, the sensor volume and the measurement time, and having units of action, with ℏ. A first-principles derivation of this limit is still elusive. We here present such a derivation based on quantum thermodynamic arguments.

View Article and Find Full Text PDF

Understanding and modeling of gas puff injection for diagnostic purposes.

Rev Sci Instrum

January 2025

Max-Planck-Institut für Plasmaphysik, Garching 85748, Germany.

This article presents an experimental setup capable of providing high spatial and temporal resolution measurements of neutral gas puff injection using a glow discharge to excite the neutral gas and an ultra-high-speed camera to record the emitted light. Using the proposed setup, the shape and propagation velocity of a thermal deuterium gas puff at 1 bar have been measured. The cloud has a conical shape and a propagation velocity of vprop = 1870 ± 270 m/s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!