Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in hematopoietic and immune responses. The acquired JAK2 R683G(S) somatic mutations are detected in 15% of patients with B-cell acute lymphoblastic leukemia (B-ALL) and are presumed to be a biomarker for B-ALL. However, how JAK2 R683G(S) mutations lead to B-ALL is still unclear. Our results indicated that the E627 and R683 interaction played a vital role in JAK2 autoinhibition. Mutations (R683S, R683G and E627A) disrupting this interaction led to JAK2 constitutive activation, while mutations (R683K, E627D) restoring this interaction decreased its activity. Furthermore, spectroscopy experiments implied that disruption of the E627 and R683 interaction abolished JH1/JH2 domain interactions and forced the JH1 domain into the open, active conformation. Mutations abolishing this interaction promoted the proliferation of Ba/F3 cells. The results herein may provide clues to understanding the mechanism of JAK2 R683G(S) mutation-associated B-ALL.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10428194.2013.781171DOI Listing

Publication Analysis

Top Keywords

jak2 r683gs
16
e627 r683
12
r683 interaction
12
disruption e627
8
b-cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
r683gs mutations
8
jak2
7
interaction
6

Similar Publications

Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in hematopoietic and immune responses. The acquired JAK2 R683G(S) somatic mutations are detected in 15% of patients with B-cell acute lymphoblastic leukemia (B-ALL) and are presumed to be a biomarker for B-ALL. However, how JAK2 R683G(S) mutations lead to B-ALL is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!