Effects of dietary P on breaking load and chemical properties of bone were evaluated in growing beef heifers. Initially, 14 weaned Angus heifers received ad libitum a low P diet (.10% P dry basis) for 270 d. Heifers were subsequently randomly allotted into two groups (7 heifers/group) and received ad libitum either .12 or .20% P (dry basis). The experimental endpoint was 245 d of the treatment phase for nonpregnant and 3 wk postpartum for pregnant heifers. Results indicate that chemical and physical properties of bovine bones are sensitive to dietary P. Mineralization of rib bones was less at .12% P (dry basis). Rib bone density (g/cm3) and mineral content expressed on a per unit volume basis (mg/cm3) were the most sensitive parameters measured. Breaking load results of 12th ribs also indicated a greater amount of mineral present in heifers receiving .20% P (153.8 vs. 114.3 kg). Vertebral bone density and mineral concentrations on a per unit volume basis were also sensitive to dietary P and clearly ranked the two dietary P amounts, whereas percentage of bone ash or mineral concentration expressed on an ash basis did not.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.S0022-0302(90)78769-3DOI Listing

Publication Analysis

Top Keywords

breaking load
12
dry basis
12
load chemical
8
received libitum
8
sensitive dietary
8
bone density
8
unit volume
8
volume basis
8
heifers
6
basis
6

Similar Publications

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

In the study of structural materials, the analysis of fracture and deformation resistance plays an important role, particularly in materials widely used in the construction industry, such as poly(vinyl chloride) (PVC). PVC is a popular material used, among others, in the manufacture of window profiles, doors, pipes, and many other structural components. The aim of this research was to define the influence of the degree of milling of the glass-fibre-reinforced composite on the strength of the window frame welds, and in the next step, to propose new welding parameters to obtain sufficient strength properties that allow reducing the cost of the technological welding operation.

View Article and Find Full Text PDF

This paper presents the results of experimental tests and computer simulations on the stiffness of composite aluminium mullions used in unitised façades. The elements analysed were subjected to bending in order to simulate the actual operating conditions of aluminium façades subjected to significant wind pressure or suction loads. The basic mechanical and physical properties of the materials from which the analysed type of aluminium façade is made (Aluminium EN AW-6060 in the T66 temper and polyamide PA66 25GF), the test method, and the results obtained are described.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the potential of polyhydroxyalkanoates (PHAs), especially poly(3-hydroxybutyrate) (P3HB), for creating fine fiber nonwoven structures, with fiber diameters ranging from 2.5 µm to 20 µm through the meltblow process.
  • The study identifies limitations in existing PHA fabrics, such as brittleness and low flexibility, but shows how advancements in their processing can lead to stable three-dimensional nonwoven parts.
  • It also reveals that the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) demonstrates improved elongation properties and resilience compared to P3HB, especially
View Article and Find Full Text PDF

Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!