Object: This work aimed at evaluating the accuracy of MR-guided high-intensity focused ultrasound (MRgHIFU) brain therapy in human cadaver heads.

Methods: Eighteen heads of fresh human cadavers were removed with a dedicated protocol preventing intracerebral air penetration. The MR images allowed determination of the ultrasonic target: a part of the thalamic nucleus ventralis intermedius implicated in essential tremor. Osseous aberrations were corrected with simulation-based time reversal by using CT data from the heads. The ultrasonic session was performed with a 512-element phased-array transducer system operating at 1 MHz under stereotactic conditions with thermometric real-time MR monitoring performed using a 1.5-T imager.

Results: Dissection, imaging, targeting, and planning have validated the feasibility of this human cadaver model. The average temperature elevation measured by proton resonance frequency shift was 7.9°C ± 3°C. Based on MRI data, the accuracy of MRgHIFU is 0.4 ± 1 mm along the right/left axis, 0.7 ± 1.2 mm along the dorsal/ventral axis, and 0.5 ± 2.4 mm in the rostral/caudal axis.

Conclusions: Despite its limits (temperature, vascularization), the human cadaver model is effective for studying the accuracy of MRgHIFU brain therapy. With the 1-MHz system investigated here, there is millimetric accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2013.1.JNS12559DOI Listing

Publication Analysis

Top Keywords

brain therapy
12
cadaver model
12
human cadaver
12
high-intensity focused
8
focused ultrasound
8
mrghifu brain
8
accuracy mrghifu
8
targeting accuracy
4
accuracy transcranial
4
transcranial magnetic
4

Similar Publications

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity.

View Article and Find Full Text PDF

Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.

View Article and Find Full Text PDF

Objectives: Fibromyalgia imposes a considerable burden of disability worldwide, and its therapies include rehabilitation interventions. However, the overall brain modulatory effects of rehabilitation interventions and their effects on clinical improvements in patients with fibromyalgia remain unclear. This systematic review of magnetic resonance imaging studies synthesised evidence for the brain modulatory effects of rehabilitation in patients with fibromyalgia.

View Article and Find Full Text PDF

As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.

View Article and Find Full Text PDF

Therapeutic hypothermia in preterm infants under 36 weeks: Case series on outcomes and brain MRI findings.

Eur J Pediatr

January 2025

Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!