Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12148 | DOI Listing |
PLoS Pathog
October 2024
Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial.
View Article and Find Full Text PDFPLoS Pathog
October 2024
Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America.
The plant pathogenic bacterium Burkholderia glumae causes bacterial panicle blight (BPB) in rice-growing areas worldwide. It has been widely accepted that an acyl-homoserine lactone (AHL)-type quorum sensing (QS) system encoded by tofI and tofR genes (TofIR QS) is a key regulatory mechanism underlying the bacterial pathogenesis of B. glumae.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
October 2024
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.
Background: Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of Chlamydomonas reinhardtii cells.
View Article and Find Full Text PDFPlant Dis
September 2024
Bangladesh Agricultural University, Plant Pathology, Mymensingh, Bangladesh;
Bacterial panicle blight (BPB) is one of the emerging diseases occurring in different Agro-Ecological Zones (AEZ) of Bangladesh and can cause up to 75% yield loss. In Bangladesh, the typical symptoms of BPB include sheath rot, panicle blight, grain spotting, and grain rot in both inbred and hybrid rice varieties, which resemble those reported by Zhou (2019). To confirm, 300 field samples of 20 panicles each with typical BPB symptoms from 20 districts (3 locations each district and 5 fields per location) were collected during mid-November 2022 for the causal pathogen(s) isolation.
View Article and Find Full Text PDFPhytopathology
December 2024
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, U.S.A.
Rice production worldwide is threatened by the disease bacterial panicle blight (BPB) caused by . Despite the threat, resources to control this disease, such as completely resistant cultivars or effective chemical methods, are still lacking. However, the need to control this disease has paved the way to explore biologically based approaches harnessing the antimicrobial activities of environmental bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!