Aerobic oxidative coupling of arenes and olefins through a biomimetic approach.

Chemistry

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.

Published: March 2013

AI Article Synopsis

  • Arenes and electron-deficient olefins can undergo oxidative coupling using a catalytic process with Pd(OAc)2.
  • The reaction features low catalyst loading and utilizes p-benzoquinone and iron phthalocyanine as electron-transfer mediators to activate the C-H bond of the arene.
  • By adjusting the catalyst loading, the reaction selectively produces either mono- or diarylation products.

Article Abstract

Arenes and electron-deficient olefins can be oxidatively coupled through a biomimetic Pd(OAc)2-catalyzed transformation. C-H activation of the arene partner is effected under reaction conditions of low catalyst loading, normal oxygen pressure, and using p-benzoquinone and iron phthalocyanine as electron-transfer mediators (ETMs). By controlling catalyst loading, the reaction can be made selective for either mono- or diarylation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201300100DOI Listing

Publication Analysis

Top Keywords

catalyst loading
8
aerobic oxidative
4
oxidative coupling
4
coupling arenes
4
arenes olefins
4
olefins biomimetic
4
biomimetic approach
4
approach arenes
4
arenes electron-deficient
4
electron-deficient olefins
4

Similar Publications

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.

Nanomaterials (Basel)

January 2025

Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.

View Article and Find Full Text PDF

A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!