Amyotrophic lateral sclerosis is a devastating, progressive neurodegenerative disease that affects upper and lower motor neurons. Although several genes are identified as the cause of familial cases, the pathogeneses of sporadic forms, which account for 90% of amyotrophic lateral sclerosis, have not been elucidated. Transactive response DNA-binding protein 43 a nuclear protein regulating RNA processing, redistributes to the cytoplasm and forms aggregates, which are the histopathological hallmark of sporadic amyotrophic lateral sclerosis, in affected motor neurons, suggesting that loss-of-function of transactive response DNA-binding protein 43 is one of the causes of the neurodegeneration. To test this hypothesis, we assessed the effects of knockout of transactive response DNA-binding protein 43 in mouse postnatal motor neurons using Cre/loxp system. These mice developed progressive weight loss and motor impairment around the age of 60 weeks, and exhibited degeneration of large motor axon, grouped atrophy of the skeletal muscle, and denervation in the neuromuscular junction. The spinal motor neurons lacking transactive response DNA-binding protein 43 were not affected for 1 year, but exhibited atrophy at the age of 100 weeks; whereas, extraocular motor neurons, that are essentially resistant in amyotrophic lateral sclerosis, remained preserved even at the age of 100 weeks. Additionally, ultra structural analysis revealed autolysosomes and autophagosomes in the cell bodies and axons of motor neurons of the 100-week-old knockout mice. In summary, the mice in which transactive response DNA-binding protein 43 was knocked-out specifically in postnatal motor neurons exhibited an age-dependent progressive motor dysfunction accompanied by neuropathological alterations, which are common to sporadic amyotrophic lateral sclerosis. These findings suggest that transactive response DNA-binding protein 43 plays an essential role in the long term maintenance of motor neurons and that loss-of-function of this protein seems to contribute to the pathogenesis of amyotrophic lateral sclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awt029 | DOI Listing |
GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.
View Article and Find Full Text PDFInactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different missense mutations cause disease.
View Article and Find Full Text PDFDiverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.
View Article and Find Full Text PDFMaternal stress during pregnancy, or prenatal stress, is a risk factor for neurodevelopmental disorders in offspring, including autism spectrum disorder (ASD). In ASD, dorsal striatum displays abnormalities correlating with symptom severity, but there is a gap in knowledge about dorsal striatal cellular and molecular mechanisms that may contribute. Using a mouse model, we investigated how prenatal stress impacted striatal-dependent behavior in adult offspring.
View Article and Find Full Text PDFDeveloping populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!