A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs. | LitMetric

Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs.

Nanotechnology

Division of Energy Systems Research, Ajou University, Suwon 443-749, Republic of Korea.

Published: March 2013

We fabricated and characterized quantum-dot light emitting devices (QLEDs) that consisted of a CdSe/ZnS quantum-dot (QD) emitting layer, a hole-transporting nickel oxide (NiO) layer and/or an electron-transporting zinc oxide (ZnO) layer. Both the p-type NiO and n-type ZnO layers were formed by using sol-gel processes. All the fabricated CdSe/ZnS QLEDs showed similar electroluminescence spectra that originated from the green CdSe/ZnS QDs. However, different combinations of hole- and electron-transporting layers resulted in efficiency variations. In addition to the control of the respective concentrations of holes and electrons within a multilayer device structure, which determines the luminance and efficiency of QLEDs, the use of metal oxide layers is advantageous for long-term stability of QLEDs because they are air stable and can block the permeation of water vapor and oxygen in ambient air to a QD emitting layer. Moreover, the wet chemistry processing for their formation makes metal oxide layers attractive for low cost and/or large area manufacture of QLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/11/115201DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
oxide layers
12
cdse/zns quantum-dot
8
emitting layer
8
layers
6
oxide
5
qleds
5
application solution-processed
4
solution-processed metal
4
layers charge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!