The investigation of a series of oxygen-deficient EuO thin films provided strong evidence that the doped electrons form magnetic polarons with the nearby Eu2+ 4f spins; this is responsible for the enhanced Curie temperature observed near 140 K. Unlike in the previous magnetic polaron models proposed for the metal-to-insulator transition in EuO, the exchange coupling J between the doped electron and its neighboring 4f spins is antiferromagnetic. The model explains satisfactorily the fact that the ordering temperature of the magnetic polarons occurs at ~140 K, independently of the oxygen vacancy concentration, and the contradiction that electron doping increases T(c) and yet reduces the red shift in the optical absorption. The magnetic polarons are coupled antiferromagnetically to the Eu2+ local moments that are ordered in the Heisenberg ferromagnet below 69 K. This coupling was observable in the vicinity of 69 K. We discuss how, with increasing concentration of the oxygen vacancies, their behaviors evolve from those of isolated superparamagnetic polarons to those of percolating magnetic polarons with a finite coercivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/25/12/125802 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!