Antibacterial nanodevices could bring coatings of plastic materials and wound dressings a big step forward if the release of the antibacterial agents could be triggered by the presence of the bacteria themselves. Here, we show that novel hyaluronic acid (HA)-based nanocapsules containing the antimicrobial agent polyhexanide are specifically cleaved in the presence of hyaluronidase, a factor of pathogenicity and invasion for bacteria like Staphylococcus aureus and Escherichia coli. This resulted in an efficient killing of the pathogenic bacteria by the antimicrobial agent. The formation of different polymeric nanocapsules was achieved through a polyaddition reaction in inverse miniemulsion. After the synthesis, the nanocapsules were transferred to an aqueous medium and investigated in terms of size, size distribution, functionality, and morphology using dynamic light scattering, zeta potential measurements and scanning electron microscopy. The enzyme triggered release of a model dye and the antimicrobial polyhexanide was monitored using fluorescence and UV spectroscopy. The stability of the nanocapsules in several biological media was tested and the interaction of nanocapsules with human serum protein was studied using isothermal titration calorimetry. The antibacterial effectiveness is demonstrated by determination of the antibacterial activity and determination of the minimal bactericidal concentration (MBC).

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm302003mDOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
antimicrobial agent
8
nanocapsules
6
enzyme responsive
4
responsive hyaluronic
4
acid nanocapsules
4
nanocapsules polyhexanide
4
polyhexanide exposure
4
bacteria
4
exposure bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!