Background: Previous studies have proposed that higher blood pressure (BP) in winter is an important cause of increased mortality from cardiovascular disease during the winter. Some observational and physiological studies have shown that cold exposure increases BP, but evidence from a randomised controlled study assessing the effectiveness of intensive room heating for lowering BP was lacking.
Objectives: The present study aimed to determine whether intensive room heating in winter decreases ambulatory BP as compared with weak room heating resulting in a 10°C lower target room temperature when sufficient clothing and bedclothes are available.
Methods: We conducted a parallel group, assessor blinded, simple randomised controlled study with 1:1 allocation among 146 healthy participants in Japan from November 2009 to March 2010. Ambulatory BP was measured while the participants stayed in single experimental rooms from 21:00 to 8:00. During the session, participants could adjust the amount of clothing and bedclothes as required. Compared with the weak room heating group (mean temperature ± SD: 13.9 ± 3.3°C), systolic morning BP (mean BP 2 h after getting out of bed) of the intensive room heating group (24.2 ± 1.7°C) was significantly lower by 5.8 mm Hg (95% CI 2.4 to 9.3). Sleep-trough morning BP surges (morning BP minus lowest night-time BP) in the intensive room heating group were significantly suppressed to about two thirds of the values in the weak room heating group (14.3 vs 21.9 mm Hg; p<0.01).
Conclusions: Intensive room heating decreased morning BP and the morning BP surge in winter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jech-2012-201883 | DOI Listing |
Nanomaterials (Basel)
December 2024
School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang 453700, China.
A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China.
Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Research Group in Bioclimatology, Ethology and Animal Welfare (BioEt), Department of Animal Science, Federal University of Paraiba, Areia, Paraiba, Brazil.
The present study aimed to evaluate the effects of different nutritional plans on meat quails subjected to heat stress. A total of 324 quails male European quails () were used, with an average initial weight of 121.48 g ± 3.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!